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Abstract—We present Tapestry, a peer-to-peer overlay routing
infrastructure offering efficient, scalable, location-independent
routing of messages directly to nearby copies of an object or
service using only localized resources. Tapestry supports a generic
decentralized object location and routing applications program-
ming interface using a self-repairing, soft-state-based routing
layer. This paper presents the Tapestry architecture, algorithms,
and implementation. It explores the behavior of a Tapestry
deployment on PlanetLab, a global testbed of approximately 100
machines. Experimental results show that Tapestry exhibits stable
behavior and performance as an overlay, despite the instability
of the underlying network layers. Several widely distributed
applications have been implemented on Tapestry, illustrating its
utility as a deployment infrastructure.

Index Terms—Overlay networks, peer-to-peer (P2P), service de-
ployment, Tapestry.

I. INTRODUCTION

I NTERNET developers are constantly proposing new and
visionary distributed applications. These new applications

have a variety of requirements for availability, durability, and
performance. One technique for achieving these properties is
to adapt to failures or changes in load through migration and
replication of data and services. Unfortunately, the ability to
place replicas or the frequency with which they may be moved
is limited by underlying infrastructure. The traditional way to
deploy new applications is to adapt them somehow to existing
infrastructures (often an imperfect match) or to standardize new
Internet protocols (encountering significant intertia to deploy-
ment). A flexible but standardized substrate on which to develop
new applications is needed.

In this paper, we present Tapestry [1], [2], an extensible
infrastructure that provides decentralized object location and
routing (DOLR) [3]. The DOLR interface focuses on routing
of messages to endpoints such as nodes or object replicas.
DOLR virtualizes resources, since endpoints are named by
opaque identifiers encoding nothing about physical location.
Properly implemented, this virtualization enables message
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delivery to mobile or replicated endpoints in the presence of
instability in the underlying infrastructure. As a result, a DOLR
network provides a simple platform on which to implement
distributed applications—developers can ignore the dynamics
of the network except as an optimization. Already, Tapestry has
enabled the deployment of global-scale storage applications
such as OceanStore [4] and multicast distribution systems such
as Bayeux [5]; we return to this in Section VI.

Tapestry is a peer-to-peer (P2P) overlay network that pro-
vides high-performance, scalable, and location-independent
routing of messages to close-by endpoints, using only localized
resources. The focus on routing brings with it a desire for effi-
ciency: minimizing message latency and maximizing message
throughput. Thus, for instance, Tapestry exploits locality in
routing messages to mobile endpoints such as object replicas;
this behavior is in contrast to other structured P2P overlay
networks [6]–[11].

Tapestry uses adaptive algorithms with soft state to maintain
fault tolerance in the face of changing node membership and
network faults. Its architecture is modular, consisting of an ex-
tensible upcall facility wrapped around a simple, high-perfor-
mance router. This applications programming interface (API)
enables developers to develop and extend overlay functionality
when the basic DOLR functionality is insufficient.

In the following pages, we describe a Java-based implemen-
tation of Tapestry, and present both microbenchmarks and mac-
robenchmarks from an actual, deployed system. During normal
operation, the relative delay penalty (RDP)1 to locate mobile
endpoints is two or less in the wide area. Simulations show that
Tapestry operations succeed nearly 100% of the time under both
constant network changes and massive failures or joins, with
small periods of degraded performance during self-repair. These
results demonstrate Tapestry’s feasibility as a long running ser-
vice on dynamic, failure-prone networks such as the wide-area
Internet.

The following section discusses related work. Then,
Tapestry’s core algorithms appear in Section III, with details of
the architecture and implementation in Section IV. Section V
evaluates Tapestry’s performance. We then discuss the use of
Tapestry as an application infrastructure in Section VI and
conclude with Section VII.

II. RELATED WORK

The first generation of peer-to-peer systems included
file-sharing and storage applications: Napster, Gnutella,

1RDP, or stretch, is the ratio between the distance traveled by a message to an
endpoint and the minimal distance from the source to that endpoint.
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MojoNation, and Freenet. Napster uses central directory
servers to locate files. Gnutella provides a similar, but dis-
tributed service using scoped broadcast queries, limiting
scalability. MojoNation [12] uses an online economic model to
encourage sharing of resources. Freenet [13] is a file-sharing
network designed to resist censorship. Neither Gnutella nor
Freenet guarantee that files can be located—even in a func-
tioning network.

The second generation of P2P systems are structured P2P
overlay networks, including Tapestry [1], [2], Chord [8], Pastry
[7], and CAN [6]. These overlays implement a basic key-based
routing (KBR) interface, that supports deterministic routing of
messages to a live node that has responsibility for the destina-
tion key. They can also support higher level interfaces such as
a distributed hash table (DHT) or a DOLR layer [3]. These sys-
tems scale well and guarantee that queries find existing objects
under nonfailure conditions.

One differentiating property between these systems is that
neither CAN nor Chord take network distances into account
when constructing their routing overlay; thus, a given overlay
hop may span the diameter of the network. Both protocols route
on the shortest overlay hops available and use runtime heuris-
tics to assist. In contrast, Tapestry and Pastry construct locally
optimal routing tables from initialization and maintain them in
order to reduce routing stretch.

While some systems fix the number and location of object
replicas by providing a DHT interface, Tapestry allows ap-
plications to place objects according to their needs. Tapestry
“publishes” location pointers throughout the network to facili-
tate efficient routing to those objects with low network stretch.
This technique makes Tapestry locality-aware [14]: queries for
nearby objects are generally satisfied in time proportional to the
distance between the query source and a nearby object replica.

Both Pastry and Tapestry share similarities to the work
of Plaxton et al. [15] for a static network. Others [16], [17]
explore distributed object location schemes with provably
low search overhead, but they require precomputation, and so
are not suitable for dynamic networks. Recent works include
systems such as Kademlia [9], which uses XOR for overlay
routing, and Viceroy [10], which provides logarithmic hops
through nodes with constant degree routing tables. SkipNet
[11] uses a multidimensional skip-list data structure to support
overlay routing, maintaining both a DNS-based namespace for
operational locality and a randomized namespace for network
locality. Other overlay proposals [18], [19] attain lower bounds
on local routing state. Finally, proposals such as Brocade [20]
differentiate between local and interdomain routing to reduce
wide-area traffic and routing latency.

A new generation of applications have been proposed on top
of these P2P systems, validating them as novel application in-
frastructures. Several systems have application level multicast:
CAN-MC [21] (CAN), Scribe [22] (Pastry), and Bayeux [5]
(Tapestry). In addition, several decentralized file systems have
been proposed: CFS [23] (Chord), Mnemosyne [24] (Chord,
Tapestry), OceanStore [4] (Tapestry), and PAST [25] (Pastry).
Structured P2P overlays also support novel applications (e.g.,
attack resistant networks [26], network indirection layers [27],
and similarity searching [28]).

III. TAPESTRY ALGORITHMS

This section details Tapestry’s algorithms for routing and ob-
ject location and describes how network integrity is maintained
under dynamic network conditions.

A. DOLR Networking API

Tapestry provides a datagram-like communications interface,
with additional mechanisms for manipulating the locations of
objects. Before describing the API, we start with a couple of
definitions.

Tapestry nodes participate in the overlay and are assigned
nodeIDs uniformly at random from a large identifier space.
More than one node may be hosted by one physical host.
Application-specific endpoints are assigned globally unique
identifiers (GUIDs), selected from the same identifier space.
Tapestry currently uses an identifier space of 160-bit values
with a globally defined radix (e.g., hexadecimal, yielding
40-digit identifiers). Tapestry assumes nodeIDs and GUIDs
are roughly evenly distributed in the namespace, which can
be achieved by using a secure hashing algorithm like SHA-1
[29]. We say that node has nodeID , and an object has
GUID .

Since the efficiency of Tapestry generally improves with net-
work size, it is advantageous for multiple applications to share a
single large Tapestry overlay network. To enable application co-
existence, every message contains an application-specific iden-
tifier , which is used to select a process, or application for
message delivery at the destination [similar to the role of a port
in transmission control protocol/Internet protocol (TCP/IP)], or
an upcall handler where appropriate.

Given the above definitions, we state the four-part DOLR net-
working API as follows.

1) PUBLISHOBJECT : Publish, or make available, ob-
ject on the local node. This call is best effort, and re-
ceives no confirmation.

2) UNPUBLISHOBJECT : Best-effort attempt to
remove location mappings for .

3) ROUTETOOBJECT : Routes message to location
of an object with GUID .

4) ROUTETONODE( , Exact): Route message to applica-
tion on node . “Exact” specifies whether destination
ID needs to be matched exactly to deliver payload.

B. Routing and Object Location

Tapestry dynamically maps each identifier to a unique live
node called the identifier’s root or . If a node exists with

, then this node is the root of . To deliver messages,
each node maintains a routing table consisting of nodeIDs and
IP addresses of the nodes with which it communicates. We refer
to these nodes as neighbors of the local node. When routing
toward , messages are forwarded across neighbor links to
nodes whose nodeIDs are progressively closer (i.e., matching
larger prefixes) to in the ID space.

1) Routing Mesh: Tapestry uses local tables at each node,
called neighbor maps, to route overlay messages to the des-
tination ID digit by digit (e.g.,

, where ’s represent wildcards). This approach is similar
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Fig. 1. Tapestry routing mesh from the perspective of a single node. Outgoing
neighbor links point to nodes with a common matching prefix. Higher level
entries match more digits. Together, these links form the local routing table.

Fig. 2. Path of a message. The path taken by a message originating from node
5230 destined for node 42AD in a Tapestry mesh.

to longest prefix routing used by classless interdomain routing
(CIDR) IP address allocation [30]. A node has a neighbor map
with multiple levels, where each level contains links to nodes
matching a prefix up to a digit position in the ID and contains a
number of entries equal to the ID’s base. The primary th entry
in the th level is the ID and location of the closest node that
begins with “ ” (e.g., the ninth entry of the
fourth level for node is the closest node with an ID that
begins with . It is this prescription of “closest node” that
provides the locality properties of Tapestry. Fig. 1 shows some
of the outgoing links of a node.

Fig. 2 shows a path that a message might take through the in-
frastructure. The router for the th hop shares a prefix of length

with the destination ID; thus, to route, Tapestry looks in
its th level map for the entry matching the next digit
in the destination ID. This method guarantees that any existing
node in the system will be reached in at most logical
hops, in a system with namespace size , IDs of base , and
assuming consistent neighbor maps. When a digit cannot be
matched, Tapestry looks for a “close” digit in the routing table;
we call this surrogate routing [1], where each nonexistent ID
is mapped to some live node with a similar ID. Fig. 3 details
the NEXTHOP function for chosing an outgoing link. It is this
dynamic process that maps every identifier to a unique root
node .

The challenge in a dynamic network environment is to
continue to route reliably even when intermediate links are
changing or faulty. To help provide resilience, we exploit
network path diversity in the form of redundant routing paths.

Fig. 3. Pseudocode for NEXTHOP(�). This function locates the next hop toward
the root given the previous hop number, n, and the destination GUID G and
returns next hop or self if local node is the root.

Fig. 4. Tapestry object publish example. Two copies of an object (4378) are
published to their root node at 4377. Publish messages route to root, depositing
a location pointer for the object at each hop encountered along the way.

Primary neighbor links shown in Fig. 1 are augmented by
backup links, each sharing the same prefix.2 At the th routing
level, the neighbor links differ only on the th digit. There are

pointers on a level, and the total size of the neighbor map
is . Each node also stores reverse references
(backpointers) to other nodes that point at it. The expected total
number of such entries is .

2) Object Publication and Location: As shown above, each
identifier has a unique root node assigned by the routing
process. Each such root node inherits a unique spanning tree for
routing, with messages from leaf nodes traversing intermediate
nodes en route to the root. We utilize this property to locate
objects by distributing soft-state directory information across
nodes (including the object’s root).

A server , storing an object (with GUID, , and root
3), periodically advertises or publishes this object by routing

a publish message toward (see Fig. 4). In general, the
nodeID of is different from is the unique [2]
node reached through surrogate routing by successive calls to
NEXTHOP . Each node along the publication path stores
a pointer mapping, , instead of a copy of the object
itself. When there are replicas of an object on separate servers,
each server publishes its copy. Tapestry nodes store location

2Current implementations keep two additional backups.
3Note that objects can be assigned multiple GUIDs mapped to different root

nodes for fault tolerance.
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Fig. 5. Tapestry route to object example. Several nodes send messages to
object 4378 from different points in the network. The messages route toward
the root node of 4378. When they intersect the publish path, they follow the
location pointer to the nearest copy of the object.

mappings for object replicas in sorted order of network latency
from themselves.

A client locates by routing a message to (see Fig. 5).
Each node on the path checks whether it has a location map-
ping for . If so, it redirects the message to . Otherwise, it for-
wards the message onwards to (guaranteed to have a location
mapping).

Each hop toward the root reduces the number of nodes sat-
isfying the next hop prefix constraint by a factor of the identi-
fier base. Messages sent to a destination from two nearby nodes
will generally cross paths quickly because: each hop increases
the length of the prefix required for the next hop; the path to the
root is a function of the destination ID only, not of the source
nodeID (as in Chord); and neighbor hops are chosen for net-
work locality, which is (usually) transitive. Thus, the closer (in
network distance) a client is to an object, the sooner its queries
will likely cross paths with the object’s publish path, and the
faster they will reach the object. Since nodes sort object pointers
by distance to themselves, queries are routed to nearby object
replicas.

C. Dynamic Node Algorithms

Tapestry includes a number of mechanisms to maintain
routing table consistency and ensure object availability. In
this section, we briefly explore these mechanisms. See [2]
for complete algorithms and proofs. The majority of control
messages described here require acknowledgments and are
retransmitted where required.

1) Node Insertion: There are four components to inserting
a new node into a Tapestry network.

a) Need-to-know nodes are notified of , because fills a null
entry in their routing tables.

b) might become the new object root for existing objects.
References to those objects must be moved to to main-
tain object availability.

c) The algorithms must construct a near optimal routing table
for .

d) Nodes near are notified and may consider using in their
routing tables as an optimization.

Node insertion begins at ’s surrogate (the “root” node that
maps to in the existing network). finds , the length of

the longest prefix its ID shares with . sends out an Ac-

knowledged Multicast message that reaches the set of all ex-
isting nodes sharing the same prefix by traversing a tree based on
their nodeIDs. As nodes receive the message, they add to their
routing tables and transfer references of locally rooted pointers
as necessary, completing components (a) and (b).

Nodes reached by the multicast contact and become an
initial neighbor set used in its routing table construction.
performs an iterative nearest neighbor search beginning with
routing level . uses the neighbor set to fill routing level ,
trims the list to the closest nodes,4 and requests these nodes
send their backpointers (see Section III-B) at that level. The
resulting set contains all nodes that point to any of the nodes
at the previous routing level, and becomes the next neighbor
set. then decrements , and repeats the process until all levels
are filled. This completes component (c). Nodes contacted
during the iterative algorithm use to optimize their routing
tables where applicable, completing component (d).

To ensure that nodes inserting into the network in unison do
not fail to notify each other about their existence, every node
in the multicast keeps state on every node that is still mul-
ticasting down one of its neighbors. This state is used to tell
each node with in its multicast tree about . Additionally,
the multicast message includes a list of holes in the new node’s
routing table. Nodes check their tables against the routing table
and notify the new node of entries to fill those holes.

2) Voluntary Node Deletion: If node leaves Tapestry vol-
untarily, it tells the set of nodes in ’s backpointers of its
intention, along with a replacement node for each routing level
from its own routing table. The notified nodes each send ob-
ject republish traffic to both and its replacement. Meanwhile,

routes references to locally rooted objects to their new roots
and signals nodes in when finished.

3) Involuntary Node Deletion: In a dynamic, failure-prone
network such as the wide-area Internet, nodes generally exit the
network far less gracefully due to node and link failures or net-
work partitions, and may enter and leave many times in a short
interval. Tapestry improves object availability and routing in
such an environment by building redundancy into routing tables
and object location references (e.g., the backup forwarding
pointers for each routing table entry). Ongoing work has shown
Tapestry’s viability as a resilient routing [36].

To maintain availability and redundancy, nodes use periodic
beacons to detect outgoing link and node failures. Such events
trigger repair of the routing mesh and initiate redistribution
and replication of object location references. Furthermore,
the repair process is augmented by soft-state republishing of
object references. Tapestry repair is highly effective, as shown
in Section V-C. Despite continuous node turnover, Tapestry
retains nearly a 100% success rate at routing messages to nodes
and objects.

IV. TAPESTRY NODE ARCHITECTURE AND IMPLEMENTATION

In this section, we present the architecture of a Tapestry node,
an API for Tapestry extension, details of our current implemen-

4k is a knob for tuning the tradeoff between resources used and optimality of
the resulting routing table.
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Fig. 6. Tapestry component architecture. Messages pass up from physical
network layers and down from application layers. The Router is a central
conduit for communication.

tation, and an architecture for a higher-performance implemen-
tation suitable for use on network processors.

A. Component Architecture

Fig. 6 illustrates the functional layering for a Tapestry node.
Shown on top are applications that interface with the rest of
the system through the Tapestry API. Below this are the router
and the dynamic node management components. The former
processes routing and location messages, while the latter han-
dles the arrival and departure of nodes in the network. These
two components communicate through the routing table. At the
bottom are the transport and neighbor link layers, which to-
gether provide a cross-node messaging layer. We now describe
several of these layers.

1) Transport: The transport layer provides the abstraction
of communication channels from one overlay node to another
and corresponds to layer 4 in the OSI layering. Utilizing native
operating system (OS) functionality, many channel implemen-
tations are possible. We currently support one that uses TCP/IP
and another that uses user datagram protocol (UDP)/IP.

2) Neighbor Link: Above the transport layer is the neighbor
link layer. It provides secure but unreliable datagram facilities
to layers above, including the fragmentation and reassembly of
large messages. The first time a higher layer wishes to com-
municate with another node, it must provide the destination’s
physical address (e.g., IP address and port number). If a secure
channel is desired, a public key for the remote node may also be
provided. The neighbor link layer uses this information to es-
tablish a connection to the remote node.

Links are opened on demand by higher levels in Tapestry. To
avoid overuse of scarce operating system resources such as file
descriptors, the neighbor link layer may periodically close some
connections. Closed connections are reopened on demand.

One important function of this layer is continuous link mon-
itoring and adaptation. It provides fault detection through soft-
state keep-alive messages, plus latency and loss rate estimation.
The neighbor link layer notifies higher layers whenever link
properties change significantly.

This layer also optimizes message processing by parsing the
message headers and only deserializing the message contents

Fig. 7. Message processing. Object location requests enter from neighbor link
layer at the left. Some messages are forwarded to an extensibility layer; for
others, the router first looks for object pointers, then forward the message to
the next hop.

when required. This avoids byte copying of user data across the
operating system and Java virtual machine boundary whenever
possible. Finally, node authentication and message authentica-
tion codes (MACs) can be integrated into this layer for addi-
tional security.

3) Router: While the neighbor link layer provides basic net-
working facilities, the router implements functionality unique
to Tapestry. Included within this layer are the routing table and
local object pointers.

As discussed in Section III-B, the routing mesh is a prefix-
sorted list of neighbors stored in a node’s routing table. The
router examines the destination GUID of messages passed to
it and determines their next hop using this table and local object
pointers. Messages are then passed back to the neighbor link
layer for delivery.

Fig. 7 shows a flowchart of the object location process. Mes-
sages arrive from the neighbor link layer at the left. Some mes-
sages trigger extension upcalls as discussed in Section IV-B
and immediately invoke upcall handlers. Otherwise, local ob-
ject pointers are checked for a match against the GUID being
located. If a match is found, the message is forwarded to the
closest node in the set of matching pointers. Otherwise, the mes-
sage is forwarded to the next hop toward the root.

Note that the routing table and object pointer database are
continuously modified by the dynamic node management and
neighbor link layers. For instance, in response to changing link
latencies, the neighbor link layer may reorder the preferences
assigned to neighbors occupying the same entry in the routing
table. Similarly, the dynamic node management layer may
add or remove object pointers after the arrival or departure of
neighbors.

B. Tapestry Upcall Interface

While the DOLR API (Section III-A) provides a powerful
applications interface, other functionality, such as multicast,
requires greater control over the details of routing and object
lookup. To accommodate this, Tapestry supports an extensible
upcall mechanism. We expect that as overlay infrastructures
mature, the need for customization will give way to a set of
well-tested and commonly used routing behaviors.

The interaction between Tapestry and application handlers
occurs through three primary calls ( is a generic ID—could
be a nodeId , or GUID ).

1) DELIVER( , Msg): Invoked on incoming messages
destined for the local node. This is asynchronous and
returns immediately. The application generates further
events by invoking ROUTE .
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Fig. 8. Tapestry implementation. Tapestry is implemented in Java as a series of
independently scheduled stages (shown here as bubbles) that interact by passing
events to one another.

2) FORWARD( , Msg): Invoked on incoming upcall-en-
abled messages. The application must call ROUTE in
order to forward this message on.

3) ROUTE( , Msg, NextHopNode): Invoked by
the application handler to forward a message on to
NextHopNode.

Additional interfaces provide access to the routing table and ob-
ject pointer database. When an upcall-enabled message arrives,
Tapestry sends the message to the application via FORWARD .
The handler is responsible for calling ROUTE with the final
destination. Finally, Tapestry invokes DELIVER on messages
destined for the local node to complete routing.

This upcall interface provides sufficient functionality to im-
plement (for instance) the Bayeux [5] multicast system. Mes-
sages are marked to trigger upcalls at every hop, so that Tapestry
invokes the FORWARD call for each message. The Bayeux han-
dler then examines a membership list, sorts it into groups and
forward a copy of the message to each outgoing entry.

C. Implementation

We follow our discussion of the Tapestry component architec-
ture with a detailed look at the current implementation, choices
made, and the rationale behind them. Tapestry is currently im-
plemented in Java and consists of roughly 57 000 lines of code
in 255 source files.

1) Implementation of a Tapestry Node: Tapestry is imple-
mented as an event-driven system for high throughput and scala-
bility. This paradigm requires an asynchronous I/O layer, as well
as an efficient model for internal communication and control
between components. We currently leverage the event-driven
SEDA [31] application framework for these requirements. In
SEDA, internal components communicate via events and a sub-
scription model. As shown in Fig. 8, these components are the
core router, node membership, mesh repair, patchwork, and the
network stage.

The network stage corresponds to a combination of the
neighbor link layer and portions of the transport layer from the
general architecture. It implements parts of the neighbor com-
munication abstraction that are not provided by the operating
system. It is also responsible for buffering and dispatching
of messages to higher levels of the system. The network
stage interacts closely with the patchwork monitoring facility
(discussed later) to measure loss rates and latency information
for established communication channels.

The core router utilizes the routing and object reference tables
to handle application driven messages, including object publish,
object location, and routing of messages to destination nodes.
The router also interacts with the application layer via applica-
tion interface and upcalls. The core router is in the critical path
of all messages entering and exiting the system. We will show
in Section V that our implementation is reasonably efficient.
However, the Tapestry algorithms are amenable to fast-path op-
timization to further increase throughput and decrease latency;
we discuss this in Section IV-D.

Supporting the router are two dynamic components: a deter-
ministic node membership stage and a soft-state mesh repair
stage. Both manipulate the routing table and the object reference
table. The node membership stage is responsible for handling
the integration of new nodes into the Tapestry mesh, as well as
graceful (or voluntary) exit of nodes. This stage is responsible
for starting each new node with a correct routing table—one re-
flecting correctness and network locality.

In contrast, the mesh repair stage is responsible for adapting
the Tapestry mesh as the network environment changes. This
includes responding to changes in the quality of network links
(including links failures), adapting to catastrophic loss of neigh-
bors, and updating the routing table to account for slow vari-
ations in network latency. The repair process also actively re-
distributes object pointers as network conditions change. The
repair process can be viewed as an event-triggered adjustment
of state, combined with continuous background restoration of
routing and object location information. This provides quick
adaptation to most faults and evolutionary changes, while pro-
viding eventual recovery from more enigmatic problems.

Finally, the Patchwork stage uses soft-state beacons to
probe outgoing links for reliability and performance, allowing
Tapestry to respond to failures and changes in network topology.
It also supports asynchronous latency measurements to other
nodes. It is tightly integrated with the network, using native
transport mechanisms (such as channel acknowledgments)
when possible.

We have implemented both TCP- and UDP-based network
layers. By itself, TCP supports both flow and congestion con-
trol, behaving fairly in the presence of other flows. Its disad-
vantages are long connection setup and tear-down times, subop-
timal usage of available bandwidth, and the consumption of file
descriptors (a limited resource). In contrast, UDP messages can
be sent with low overhead and may utilize more of the available
bandwidth on a network link. UDP alone, however, does not
support flow control or congestion control, and can consume
an unfair share of bandwidth causing wide-spread congestion
if used across the wide area. To correct for this, our UDP layer
includes TCP-like congestion control, as well as limited retrans-
mission capabilities. We are still exploring the advantages and
disadvantages of each protocol; however, the fact that our UDP
layer does not consume file descriptors appears to be a signifi-
cant advantage for deployment on stock operating systems.

2) Node Virtualization: To enable a wider variety of exper-
iments, we can place multiple Tapestry node instances on each
physical machine. To minimize memory and computational
overhead while maximizing the number of instances on each
physical machine, we run all node instances inside a single Java
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virtual machine (JVM). This technique enables the execution
of many simultaneous instances of Tapestry on a single node.5

All virtual nodes on the same physical machine share a single
JVM execution thread (i.e., only one virtual node executes at a
time). Virtual instances only share code; each instance maintains
its own exclusive, nonshared data. A side effect of virtualization
is the delay introduced by central processing unit (CPU) sched-
uling between nodes. During periods of high CPU load, sched-
uling delays can significantly impact performance results and
artificially increase routing and location latency results. This is
exacerbated by unrealistically low network distances between
nodes on the same machine. These node instances can exchange
messages in less than 10 s, making any overlay network pro-
cessing overhead and scheduling delay much more expensive
in comparison. These factors should be considered while inter-
preting results, and are discussed further in Section V.

D. Toward a Higher Performance Implementation

In Section V, we show that our implementation can handle
over 7000 messages/s. However, a commercial-quality imple-
mentation could do much better. We close this section with an
important observation: despite the advanced functionality pro-
vided by the DOLR API, the critical path of message routing is
amenable to very high-performance optimization, such as might
be available with dedicated routing hardware.

The critical path of routing shown in Fig. 7 consists of two
distinct pieces. The simplest piece—computation of NEXTHOP

as in Fig. 3—is similar to functionality performed by hardware
routers: fast table lookup. For a million-node network with base
16 , the routing table with a GUID/IP address for each
entry would have an expected size kB—much smaller than
a CPUs cache. Simple arguments (such as in [1]) show that most
network hops involve a single lookup, whereas the final two
hops require at most lookups.

As a result, it is the second aspect of DOLR routing—fast
pointer lookup—that presents the greatest challenge to high-
throughput routing. Each router that a ROUTETOOBJECT request
passes through must query its table of pointers. If all pointers
fit in memory, a simple hash-table lookup provides com-
plexity to this lookup. However, the number of pointers could
be quite large in a global-scale deployment, and furthermore,
the fast memory resources of a hardware router are likely to be
smaller than state-of-the-art workstations.

To address this issue, we note that most routing hops receive
negative lookup results (only one receives a successful result).
We can imagine building a Bloom filter [32] over the set of
pointers. A Bloom filter is a lossy representation of a set that
can detect the absence of a member of this set quite quickly.
The size of a Bloom filter must be adjusted to avoid too many
false-positives; although we will not go into the details here,
a reasonable size for a Bloom filter over pointers is about

bits. Assuming that pointers (with all their information)
are 100 bytes, the in-memory footprint of a Bloom filter can
be two orders of magnitude smaller than the total size of the
pointers.

5We have run 20 virtual nodes per machine, but have yet to stress the network
virtualization to its limit.

Fig. 9. Enhanced pointer lookup. We quickly check for object pointers
using a Bloom filter to eliminate definite nonmatches, then use an in-memory
cache to check for recently used pointers. Only when both of these fail do we
(asynchronously) fall back to a slower repository.

Consequently, we propose enhancing the pointer lookup as
in Fig. 9. In addition to a Bloom filter front-end, this figure in-
cludes a cache of active pointers that is as large as will fit in the
memory of the router. The primary point of this figure is to split
up the lookup process into a fast negative check, followed by a
fast postive check (for objects which are very active), followed
by something slower. Although we say “disk” here, this fallback
repository could be memory on a companion processor that is
consulted by the hardware router when all else fails.

V. EVALUATION

We evaluate our implementation of Tapestry using several
platforms. We run microbenchmarks on a local cluster, mea-
sure the large scale performance of a deployed Tapestry on the
PlanetLab global testbed, and make use of a local network sim-
ulation layer to support controlled, repeatable experiments with
up to 1000 Tapestry instances.

A. Evaluation Methodology

We begin with a short description of our experimental
methodology. All experiments used a Java Tapestry implemen-
tation (see Section IV-C) running in IBM’s JDK 1.3 with node
virtualization (see Section V-C). Our microbenchmarks are run
on local cluster machines of dual Pentium III 1-GHz servers
(1.5 GB RAM) and Pentium IV 2.4-GHz servers (1 GB RAM).

We run wide-area experiments on PlanetLab, a network
testbed consisting of roughly 100 machines at institutions
in North America, Europe, Asia, and Australia. Machines
include 1.26 GHz Pentium III Xeon servers (1 GB RAM) and
1.8-GHz Pentium IV towers (2 GB RAM). Roughly two-thirds
of the PlanetLab machines are connected to the high-capacity
Internet2 network. The measured distribution of pair-wise ping
distances are plotted in Fig. 10 as a histogram. PlanetLab is a
real network under constant load, with frequent data loss and
node failures. We perform wide-area experiments on this infra-
structure to approximate performance under real deployment
conditions.

Each node in our PlanetLab tests runs a test-member stage
that listens to the network for commands sent by a central test-
driver. Note that the results of experiments using node virtual-
ization may be skewed by the processing delays associated with
sharing CPUs across node instances on each machine.

Finally, in instances where we need large-scale, repeatable
and controlled experiments, we perform experiments using the
Simple OceanStore Simulator (SOSS) [33]. SOSS is an event-
driven network layer that simulates network time with queues
driven by a single local clock. It injects artificial network trans-



48 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004

Fig. 10. PlanetLab ping distribution. A histogram representation of pair-wise
ping measurements on the PlanetLab global testbed.

Fig. 11. Message processing latency. Processing latency (full turnaround time)
per message at a single Tapestry overlay hop, as a function of the message
payload size.

mission delays based on an input network topology and allows
a large number of Tapestry instances to execute on a single ma-
chine while minimizing resource consumption.

B. Performance in a Stable Network

We first examine Tapestry performance under stable or static
network conditions.

1) Microbenchmarks on Stable Tapestry: We use mi-
crobenchmarks on a network of two nodes to isolate Tapestry’s
message processing overhead. The sender establishes a binary
network with the receiver, and sends a stream of 10 001 mes-
sages for each message size. The receiver measures the latency
for each size using the interarrival time between the first and
last messages.

First, we eliminate the network delay to measure raw mes-
sage processing by placing both nodes on different ports on
the same machine. To see how performance scales with pro-
cessor speed, we perform our tests on a P-III 1-GHz machine
and a P-IV 2.4-GHz machine. The latency results in Fig. 11
show that for very small messages, there is a dominant, con-
stant processing time of approximately 0.1 ms for the P-IV and
0.2 for the P-III. For messages larger than 2 kB, the cost of
copying data (memory buffer to network layer) dominates and
processing time becomes linear relative to the message size. A
raw estimate of the processors (as reported by the bogomips
metric under Linux) shows the P-IV to be 2.3 times faster. We

Fig. 12. Max routing throughput. Maximum sustainable message traffic
throughput as a function of message size.

Fig. 13. RDP of routing to nodes. The ratio of Tapestry routing to a node versus
the shortest roundtrip IP distance between the sender and receiver.

see that routing latency changes proportionally with the increase
in processor speed, meaning we can fully leverage Moore’s Law
for faster routing in the future.

We also measure the corresponding routing throughput.
As expected, Fig. 12 shows that throughput is low for small
messages, where a processing overhead dominates, and quickly
increases as messages increase in size. For the average 4-kB
Tapestry message, the P-IV can process 7100 messages/s and
the P-III processes 3200 messages/s. The gap between this
and the estimate we get from calculating the inverse of the
per message routing latency can be attributed to scheduling
and queuing delays from the asychronous I/O layer. We also
measure the throughput with two 2.4-GHz P-IVs connected
via a 100 Mb/s Ethernet link. Results show that the maximum
bandwidth can be utilized at 4-kB sized messages.

2) Routing Overhead to Nodes and Objects: Next, we ex-
amine the performance of routing to a node and routing to an
object’s location under stable network conditions, using 400
Tapestry nodes evenly distributed on 62 PlanetLab machines.
The performance metric is RDP, the ratio of routing using the
overlay to the shortest IP network distance. Note that shortest
distance values are measured using ICMP ping commands,
and therefore incur no data copying or scheduling delays. In
both graphs (see Figs. 13 and 14), we plot the 90th percentile
value, the median, and the minimum.

We compute the RDP for node routing by measuring all pairs
roundtrip routing latencies between the 400 Tapestry instances,
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Fig. 14. RDP of routing to objects. The ratio of Tapestry routing to an object
versus the shortest one-way IP distance between the client and the object’s
location.

and dividing each by the corresponding ping round-trip time.6

In Fig. 13, we see that median values for node to node routing
RDP start at and slowly decrease to . The use of
multiple Tapestry instances per machine means that tests under
heavy load will produce scheduling delays between instances,
resulting in an inflated RDP for short latency paths. This is
exacerbated by virtual nodes on the same machine yielding
unrealistically low roundtrip ping times.

We also measure routing to object RDP as a ratio of one-way
Tapestry route to object latency, versus the one-way network la-
tency ( ping time). For this experiment, we place 10 000
randomly named objects on a single server, planetlab-1.stan-
ford.edu. All 399 other Tapestry nodes begin in unison to send
messages to each of the 10 000 objects by GUID. RDP values
are sorted by their ping values and collected into 5-ms bins,
with 90th percentile and median values calculated per bin (see
Fig. 14).

3) Object Location Optimization: Although the object
location results of Fig. 14 are good at large distances, they
diverge significantly from the optimal IP latency at short
distances. Further, the variance increases greatly at short
distances. The reason for both of these results is quite simple:
extraneous hops taken while routing at short distances are
a greater overall fraction of the ideal latency. High variance
indicates some client/server combinations will consistently see
nonideal performance and tends to limit the advantages that
clients gain through careful object placement. Fortunately, we
can greatly improve behavior by storing extra object pointers
on nodes close to the object. This technique trades extra storage
space in the network for faster routing.

We investigate this tradeoff by publishing additional object
pointers to backup nodes of the next hop of the publish path,
and the nearest (in terms of network distance) neighbors of the
current hop. We bound the overhead of these simple optimiza-
tions by applying them along the first hops of the path. Fig. 15
shows the optimization benefits for 90th percentile local-area
routing-to-objects RDP. To explore a larger topology, this figure
was generated using the SOSS simulator [33] with a transit stub
topology of 1092 nodes. We place 25 objects on each of 1090

6Round-trip routing in Tapestry may use asymmetric paths in each direction,
as is often the case for IP routing.

Fig. 15. The 90th percentile RDP of routing to objects with optimization. Each
line represents a set of optimization parameters (k backups, l nearest neighbors,
m hops), with cost (additional pointers per object) in brackets.

Fig. 16. Node insertion latency. Time for single node insertion, from the initial
request message to network stabilization.

Tapestry nodes, and have each node route to 100 random objects
for various values of , and .

This figure demonstrates that optimizations can significantly
lower the RDP observed by the bulk of all requesters for
local-area network distances. For instance, the simple addition
of two pointers in the local area (one backup, one nearest, one
hop) greatly reduces the observed variance in RDP.

C. Convergence Under Network Dynamics

Here, we analyze Tapestry’s scalability and stability under
dynamic conditions.

1) Single Node Insertion: We measure the overhead re-
quired for a single node to join the Tapestry network, in terms
of time required for the network to stabilize (insertion latency),
and the control message bandwidth during insertion (control
traffic bandwidth).

Fig. 16 shows insertion time as a function of the network size.
For each datapoint, we construct a Tapestry network of size ,
and repeatedly insert and delete a single node 20 times. Since
each node maintains routing state logarithmically proportional
to network size, we expect that latency will scale similarly with
network size. The figure confirms this, as it shows that latencies
scale sublinearly with the size of the network.

The bandwidth used by control messages is an important
factor in Tapestry scalability. For small networks where each
node knows most of the network (size ), nodes touched
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Fig. 17. Node insertion bandwidth. Total control traffic bandwidth for single
node insertion.

Fig. 18. Parallel insertion convergence. Time for the network to stabilize after
nodes are inserted in parallel, as a function of the ratio of nodes in the parallel
insertion to size of the stable network.

by insertion (and the corresponding bandwidth) will likely
scale linearly with network size. Fig. 17 shows that the total
bandwidth for a single node insertion scales logarithmically
with the network size. We reduced the GUID base to four
in order to better highlight the logarithmic trend in network
sizes of 16 and above. Control traffic costs include all distance
measurements, nearest neighbor calculations, and routing table
generation. Finally, while total bandwidth scales as ,
the bandwidth seen by any single link or node is significantly
lower.

2) Parallel Node Insertion: Next, we measure the effects of
multiple nodes simultaneously entering the Tapestry by exam-
ining the convergence time for parallel insertions. Starting with
a stable network of size 200 nodes, we repeat each parallel in-
sertion 20 times, and plot the minimum, median and 90th per-
centile values versus the ratio of nodes being simultaneously
inserted (see Fig. 18). Note that while the median time to con-
verge scales roughly linearly with the number of simultaneously
inserted nodes, the 90% value can fluctuate more significantly
for ratios equal to or greater than 10%. Much of this increase
can be attributed to effects of node virtualization. When a sig-
nificant portion of the virtual Tapestry instances are involved in
node insertion, scheduling delays between them will compound
and result in significant delays in message handling and the re-
sulting node insertion.

Fig. 19. Route to node under failure and joins. The performance of Tapestry
route to node with two massive network membership change events. Starting
with 830 nodes, 20% of nodes (166) fail, followed 16 min later by a massive
join of 50% (333 nodes).

Fig. 20. Route to object under failure and joins. The performance of Tapestry
route to objects with two massive network membership change events. Starting
with 830 nodes, 20% of nodes (166) fail, followed 16 min later by a massive
join of 50% (333 nodes).

3) Continuous Convergence and Self-Repair: Finally, we
wanted to examine large-scale performance under controlled
failure conditions. Unlike the other experiments where we mea-
sured performance in terms of latency, these tests focused on
large-scale behavior under failures. To this end, we performed
the experiments on the SOSS simulation framework, which
allows up to 1000 Tapestry instances to be run on a single
machine.

In our tests, we wanted to examine success rates of both
routing to nodes and objects, under two modes of network
change: drastic changes in network membership and slow
constant membership churn. The routing to nodes test measures
the success rate of sending requests to random keys in the
namespace, which always map to some unique nodes in the net-
work. The routing to objects test sends messages to previously
published objects, located at servers which were guaranteed
to stay alive in the network. Our performance metrics include
both the amount of bandwidth used and the success rate, which
is defined by the percentage of requests that correctly reached
their destination.

Figs. 19 and 20 demonstrate the ability of Tapestry to recover
after massive changes in the overlay network membership. We
first kill 20% of the existing network, wait for 15 min and insert
new nodes equal to 50% of the existing network. As expected,
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Fig. 21. Route to node under churn. Routing to nodes under two churn periods,
starting with 830 nodes. Churn 1 uses a poisson process with average interarrival
time of 20 s and randomly kills nodes such that the average lifetime is 4 min.
Churn 2 uses 10 s and 2 min.

Fig. 22. Route to object under churn. The performance of Tapestry route to
objects under two periods of churn, starting from 830 nodes. Churn 1 uses
random parameters of one node every 20 s and average lifetime of 4 min.
Churn 2 uses 10 s and 2 min.

a small fraction of requests are affected when large portions of
the network fail. The results show that as faults are detected,
Tapestry recovers, and the success rate quickly returns to 100%.
Similarly, a massive join event causes a dip in success rate which
returns quickly to 100%. Note that during the large join event,
bandwidth consumption spikes as nodes exchange control mes-
sages to integrate in the new nodes. The bandwidth then levels
off as routing tables are repaired and consistency is restored.

For churn tests, we measure the success rate of requests on a
set of stable nodes while constantly churning a set of dynamic
nodes, using insertion and failure rates driven by probability
distributions. The SOSS simulations start with a stable set of 830
nodes and peaks at 858 nodes during churn, while the PlanetLab
tests start with 520 nodes and peaks at 541. Each test includes
two churns of a different level of dynamicity. In the first churn,
insertion uses a Poisson distribution with average interarrival
time of 20 s and failure uses an exponential distribution with
mean node lifetime of 4 min. The second churn increases the
dynamic rates of insertion and failure, using 10 s and 2 min as
the parameters, respectively.

Figs. 21 and 22 show the impact of constant change on
Tapestry performance. In both cases, the success rate of
requests under constant churn rarely dipped slightly below
100%. These imperfect measurements occur independently

Fig. 23. Failure, join, and churn on PlanetLab. Impact of network dynamics
on the success rate of route to node requests.

of the parameters given to the churn, showing that Tapestry
operations succeed with high probability even under high rates
of turnover.

Finally, we measure the success rate of routing to nodes under
different network changes on the PlanetLab testbed. Fig. 23
shows that requests experience very short dips in reliability fol-
lowing events such as massive failure and large joins. Reliability
also dips while node membership undergoes constant churn (in-
terarrival times of 5 s and average lifetimes are 60 s) but recovers
afterwards. In order to support more nodes on PlanetLab, we use
a UDP networking layer, and run each instance in its own JVM
(so they can be killed independently). Note that the additional
number of JVMs increases scheduling delays, resulting in re-
quest timeouts as the size of the network (and virtualization)
increases.

These experiments show that Tapestry is highly resilient
under dynamic conditions, providing a near-optimal success
rate for requests under high churn rates, and quickly recovering
from massive membership change events in under a minute.
They demonstrate Tapestry’s feasibility as a long running
service on dynamic networks such as the wide-area Internet.

VI. DEPLOYING APPLICATIONS WITH TAPESTRY

In previous sections, we explored the implementation and be-
havior of Tapestry. As shown, Tapestry provides a stable inter-
face under a variety of network conditions. Continuing the main
theme of the paper, we now discuss how Tapestry can address
the challenges facing large-scale applications.

With the increasing ubiquity of the Internet, application de-
velopers have begun to focus on large-scale applications that
leverage common resources across the network. Examples in-
clude application level multicast, global-scale storage systems,
and traffic redirection layers for resiliency or security. These ap-
plications share new challenges in the wide area: users will find
it more difficult to locate nearby resources as the network grows
in size, and dependence on more distributed components means
a smaller mean time between failures (MTBF) for the system.
For example, a file sharing user might want to locate and re-
trieve a close-by replica of a file, while avoiding server or net-
work failures.

Security is also an important concern. The Sybil attack [34]
is an attack where a user obtains a large number of identities
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to mount collusion attacks. Tapestry addresses this by using a
trusted public-key infrastructure (PKI) for nodeID assignment.
To limit damage from subverted nodes, Tapestry nodes can work
in pairs by routing messages for each other through neighbors
and verifying the path taken. Reference [35] proposes another
generalized mechanism to thwart collusion-based routing redi-
rection attacks. Finally, Tapestry will support the use of MACs
to maintain integrity of overlay traffic.

As described in Section III, Tapestry supports efficient
routing of messages to named objects or endpoints in the
network. It also scales logarithmically with the network size
in both per-node routing state and expected number of overlay
hops in a path. Additionally, Tapestry provides resilience
against server and network failures by allowing messages to
route around them on backup paths. We have shown Tapestry
to provide a resilient traffic routing layer [36]. Applications can
achieve additional resilience by replicating data across multiple
servers, and relying on Tapestry to direct client requests to
nearby replicas.

A variety of different applications have been designed,
implemented and deployed on the Tapestry infrastructure.
OceanStore [4] is a global-scale, highly available storage utility
deployed on the PlanetLab testbed. OceanStore servers use
Tapestry to disseminate encoded file blocks efficiently, and
clients can quickly locate and retrieve nearby file blocks by their
ID, all despite server and network failures. Other applications
include Mnemosyne [24], a stegnographic file system, Bayeux
[5], an efficient self-organizing application-level multicast
system, and SpamWatch [28], a decentralized spam-filtering
system utilizing a similarity search engine implemented on
Tapestry.

VII. CONCLUSION

We described Tapestry, an overlay routing network for
rapid deployment of new distributed applications and services.
Tapestry provides efficient and scalable routing of messages
directly to nodes and objects in a large, sparse address space.
We presented the architecture of Tapestry nodes, highlighting
mechanisms for low-overhead routing and dynamic state repair,
and showed how these mechanisms can be enhanced through
an extensible API.

An implementation of Tapestry is running both in simulation
and on the global-scale PlanetLab infrastructure. We explored
the performance and adaptability of our Tapestry implemen-
tation under a variety of real-world conditions. Significantly,
Tapestry behaves well even when a large percentage of the net-
work is changing. Simulations show Tapestry performs near-op-
timally under faults, while a small portion (~5%) of queries fail
on the faulty wide-area deployment. Routing is efficient: the me-
dian RDP or stretch starts around a factor of three for nearby
nodes and rapidly approaches one. Further, the median RDP for
object location is below a factor of two in the wide area. Simple
optimizations were shown to bring overall median RDP to under
a factor of two. Finally, several general-purpose applications
have been built on top of Tapestry by the authors and others.
Overall, we believe that wide-scale Tapestry deployment could
be practical, efficient, and useful to a variety of applications.
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